redoules.github.io/machine-learning/Multiple_Linear_Regression.html
redoules b2a2d71169 added an article
added an article on extanding pandas datatypes
2018-12-24 18:25:16 +01:00

297 lines
17 KiB
HTML

<!DOCTYPE html>
<html lang="fr">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<!-- The above 3 meta tags *must* come first in the head; any other head content must come *after* these tags -->
<meta name="description" content="Data Science for Political and Social Phenomena">
<meta name="author" content="Guillaume Redoulès">
<link rel="icon" href="../favicon.ico">
<title>Multiple Linear Regression - Machine Learning</title>
<!-- JQuery -->
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.3/jquery.min.js"></script>
<script>
window.jQuery || document.write('<script src="../theme/js/jquery.min.js"><\/script>')
</script>
<!-- Bootstrap core CSS -->
<link rel="stylesheet" href="../theme/css/bootstrap.css" />
<!-- IE10 viewport hack for Surface/desktop Windows 8 bug -->
<link rel="stylesheet" type="text/css" href="../theme/css/ie10-viewport-bug-workaround.css" />
<!-- Custom styles for this template -->
<link rel="stylesheet" type="text/css" href="../theme/css/style.css" />
<link rel="stylesheet" type="text/css" href="../theme/css/notebooks.css" />
<link href='https://fonts.googleapis.com/css?family=PT+Serif:400,700|Roboto:400,500,700' rel='stylesheet' type='text/css'>
<!-- HTML5 shim and Respond.js for IE8 support of HTML5 elements and media queries -->
<!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.2/html5shiv.min.js"></script>
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
<![endif]-->
<meta name="tags" content="linear" />
</head>
<body>
<div class="navbar navbar-fixed-top">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-collapse">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="..">Guillaume Redoulès</a>
</div>
<div class="navbar-collapse collapse" id="searchbar">
<ul class="nav navbar-nav navbar-right">
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false">About<span class="caret"></span></a>
<ul class="dropdown-menu">
<li><a href="../pages/about.html">About Guillaume</a></li>
<li><a href="https://github.com/redoules">GitHub</a></li>
<li><a href="https://www.linkedin.com/in/guillaume-redoul%C3%A8s-33923860/">LinkedIn</a></li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false">Data Science<span class="caret"></span></a>
<ul class="dropdown-menu">
<li><a href="..#Blog">Blog</a></li>
<li><a href="..#Python">Python</a></li>
<li><a href="..#Bash">Bash</a></li>
<li><a href="..#SQL">SQL</a></li>
<li><a href="..#Mathematics">Mathematics</a></li>
<li><a href="..#Machine_Learning">Machine Learning</a></li>
<li><a href="..#Projects">Projects</a></li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false">Projects<span class="caret"></span></a>
<ul class="dropdown-menu">
<li><a href="https://github.com/redoules/redoules.github.io">Notes (Github)</a></li>
</ul>
</li>
<!--<li class="dropdown">
<a href="../feeds/blog.rss.xml">Blog RSS</a>
</li>-->
</ul>
<form class="navbar-form" action="../search.html" onsubmit="return validateForm(this.elements['q'].value);">
<div class="form-group" style="display:inline;">
<div class="input-group" style="display:table;">
<span class="input-group-addon" style="width:1%;"><span class="glyphicon glyphicon-search"></span></span>
<input class="form-control search-query" name="q" id="tipue_search_input" placeholder="e.g. scikit KNN, pandas merge" required autocomplete="off" type="text">
</div>
</div>
</form>
</div>
<!--/.nav-collapse -->
</div>
</div>
<!-- end of header section -->
<div class="container">
<!-- <div class="alert alert-warning" role="alert">
Did you find this page useful? Please do me a quick favor and <a href="#" class="alert-link">endorse me for data science on LinkedIn</a>.
</div> -->
<section id="content" class="body">
<header>
<h1>
Multiple Linear Regression
</h1>
<ol class="breadcrumb">
<li>
<time class="published" datetime="2018-11-16T20:25:00+01:00">
16 novembre 2018
</time>
</li>
<li>Machine Learning</li>
<li>linear</li>
</ol>
</header>
<div class='article_content'>
<p>If <span class="math">\(Y\)</span> is linearly dependent only on <span class="math">\(X\)</span>, then we can use the ordinary least square regression line, <span class="math">\(\hat{Y}=a+bX\)</span>. </p>
<p>However, if <span class="math">\(Y\)</span> shows linear dependency on <span class="math">\(m\)</span> variables <span class="math">\(X_1\)</span>, <span class="math">\(X_2\)</span>, ..., <span class="math">\(X_m\)</span>, then we need to find the values of <span class="math">\(a\)</span> and <span class="math">\(m\)</span> other constants (<span class="math">\(b_1\)</span>, <span class="math">\(b_2\)</span>, ..., <span class="math">\(b_m\)</span>). We can then write the regression equation as: </p>
<div class="math">$$\hat{Y}=a+\sum_{i=1}^{m}b_iX_i$$</div>
<h2>Matrix Form of the Regression Equation</h2>
<p>Let's consider that <span class="math">\(Y\)</span> depends on two variables, <span class="math">\(X_1\)</span> and <span class="math">\(X_2\)</span>. We write the regression relation as <span class="math">\(\hat{Y}=a+b_1X_1+b_2X_2\)</span>. Consider the following matrix operation: </p>
<div class="math">$$\begin{bmatrix}
1 &amp; X_1 &amp; X_2\\
\end{bmatrix}\cdot\begin{bmatrix}
a \\
b_1\\
b_2\\
\end{bmatrix}=a+b_1X_1+b_2X_2$$</div>
<p>We define two matrices, <span class="math">\(X\)</span> and <span class="math">\(B\)</span> as:</p>
<div class="math">$$X=\begin{bmatrix}1 &amp; X_1 &amp; X_2\\\end{bmatrix}$$</div>
<div class="math">$$B=\begin{bmatrix}a \\b_1\\b_2\\\end{bmatrix}$$</div>
<p>Now, we rewrite the regression relation as <span class="math">\(\hat{Y}=X\cdot B\)</span>. This transforms the regression relation into matrix form.</p>
<h2>Generalized Matrix Form</h2>
<p>We will consider that <span class="math">\(Y\)</span> shows a linear relationship with <span class="math">\(m\)</span> variables, <span class="math">\(X_1\)</span>, <span class="math">\(X_2\)</span>, ..., <span class="math">\(X_m\)</span>. Let's say that we made <span class="math">\(n\)</span> observations on different tuples <span class="math">\((x_1, x_2, ..., x_m)\)</span>:</p>
<ul>
<li><span class="math">\(y_1=a+b_1\cdot x_{1,1} + b_2\cdot x_{2,1} + ... + b_m\cdot x_{m,1}\)</span></li>
<li><span class="math">\(y_2=a+b_2\cdot x_{1,2} + b_2\cdot x_{2,2} + ... + b_m\cdot x_{m,2}\)</span></li>
<li><span class="math">\(...\)</span></li>
<li><span class="math">\(y_n=a+b_n\cdot x_{1,n} + b_2\cdot x_{2,n} + ... + b_m\cdot x_{m,n}\)</span></li>
</ul>
<p>Now, we can find the matrices:</p>
<div class="math">$$X=\begin{bmatrix}1 &amp; x_{1,1} &amp; x_{2,1} &amp; x_{3,1} &amp; ... &amp; x_{m,1} \\1 &amp; x_{1,2} &amp; x_{2,2} &amp; x_{3,2} &amp; ... &amp; x_{m,2} \\1 &amp; x_{1,3} &amp; x_{2,3} &amp; x_{3,3} &amp; ... &amp; x_{m,3} \\... &amp; ... &amp; ... &amp; ... &amp; ... &amp; ... \\1 &amp; x_{1,n} &amp; x_{2,n} &amp; x_{3,n} &amp; ... &amp; x_{m,n} \\\end{bmatrix}$$</div>
<div class="math">$$Y=\begin{bmatrix}y_1 \\y_2\\y_3\\...\\y_n\\\end{bmatrix}$$</div>
<h3>Finding the Matrix B</h3>
<p>We know that <span class="math">\(Y=X\cdot B\)</span>
</p>
<div class="math">$$\Rightarrow X^T\cdot Y=X^T\cdot X \cdot B$$</div>
<div class="math">$$\Rightarrow (X^T\cdot X)^{-1}\cdot X^T \cdot Y=I\cdot B$$</div>
<div class="math">$$\Rightarrow B= (X^T\cdot X)^{-1}\cdot X^T \cdot Y$$</div>
<h3>Finding the Value of Y</h3>
<p>Suppose we want to find the value of for some tuple <span class="math">\(Y\)</span>, then <span class="math">\((x_1, x_2, ..., x_m)\)</span>,</p>
<div class="math">$$Y=\begin{bmatrix}
1 &amp; x_1 &amp; x_2 &amp; ... &amp; x_m\\
\end{bmatrix}\cdot B$$</div>
<h2>Multiple Regression in Python</h2>
<p>We can use the fit function in the sklearn.linear_model.LinearRegression class.</p>
<div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">sklearn</span> <span class="kn">import</span> <span class="n">linear_model</span>
<span class="n">x</span> <span class="o">=</span> <span class="p">[[</span><span class="mi">5</span><span class="p">,</span> <span class="mi">7</span><span class="p">],</span> <span class="p">[</span><span class="mi">6</span><span class="p">,</span> <span class="mi">6</span><span class="p">],</span> <span class="p">[</span><span class="mi">7</span><span class="p">,</span> <span class="mi">4</span><span class="p">],</span> <span class="p">[</span><span class="mi">8</span><span class="p">,</span> <span class="mi">5</span><span class="p">],</span> <span class="p">[</span><span class="mi">9</span><span class="p">,</span> <span class="mi">6</span><span class="p">]]</span>
<span class="n">y</span> <span class="o">=</span> <span class="p">[</span><span class="mi">10</span><span class="p">,</span> <span class="mi">20</span><span class="p">,</span> <span class="mi">60</span><span class="p">,</span> <span class="mi">40</span><span class="p">,</span> <span class="mi">50</span><span class="p">]</span>
<span class="n">lm</span> <span class="o">=</span> <span class="n">linear_model</span><span class="o">.</span><span class="n">LinearRegression</span><span class="p">()</span>
<span class="n">lm</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span>
<span class="n">a</span> <span class="o">=</span> <span class="n">lm</span><span class="o">.</span><span class="n">intercept_</span>
<span class="n">b</span> <span class="o">=</span> <span class="n">lm</span><span class="o">.</span><span class="n">coef_</span>
<span class="k">print</span><span class="p">(</span><span class="n">f</span><span class="s2">&quot;Linear regression coefficients between Y and X : a={a}, b_0={b[0]}, b_1={b[1]}&quot;</span><span class="p">)</span>
</pre></div>
<div class="highlight"><pre><span></span>Linear regression coefficients between Y and X : a=51.953488372092984, b_0=6.65116279069768, b_1=-11.162790697674419
</pre></div>
<script type="text/javascript">if (!document.getElementById('mathjaxscript_pelican_#%@#$@#')) {
var align = "center",
indent = "0em",
linebreak = "false";
if (false) {
align = (screen.width < 768) ? "left" : align;
indent = (screen.width < 768) ? "0em" : indent;
linebreak = (screen.width < 768) ? 'true' : linebreak;
}
var mathjaxscript = document.createElement('script');
mathjaxscript.id = 'mathjaxscript_pelican_#%@#$@#';
mathjaxscript.type = 'text/javascript';
mathjaxscript.src = 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.3/latest.js?config=TeX-AMS-MML_HTMLorMML';
mathjaxscript[(window.opera ? "innerHTML" : "text")] =
"MathJax.Hub.Config({" +
" config: ['MMLorHTML.js']," +
" TeX: { extensions: ['AMSmath.js','AMSsymbols.js','noErrors.js','noUndefined.js'], equationNumbers: { autoNumber: 'AMS' } }," +
" jax: ['input/TeX','input/MathML','output/HTML-CSS']," +
" extensions: ['tex2jax.js','mml2jax.js','MathMenu.js','MathZoom.js']," +
" displayAlign: '"+ align +"'," +
" displayIndent: '"+ indent +"'," +
" showMathMenu: true," +
" messageStyle: 'normal'," +
" tex2jax: { " +
" inlineMath: [ ['\\\\(','\\\\)'] ], " +
" displayMath: [ ['$$','$$'] ]," +
" processEscapes: true," +
" preview: 'TeX'," +
" }, " +
" 'HTML-CSS': { " +
" styles: { '.MathJax_Display, .MathJax .mo, .MathJax .mi, .MathJax .mn': {color: 'inherit ! important'} }," +
" linebreaks: { automatic: "+ linebreak +", width: '90% container' }," +
" }, " +
"}); " +
"if ('default' !== 'default') {" +
"MathJax.Hub.Register.StartupHook('HTML-CSS Jax Ready',function () {" +
"var VARIANT = MathJax.OutputJax['HTML-CSS'].FONTDATA.VARIANT;" +
"VARIANT['normal'].fonts.unshift('MathJax_default');" +
"VARIANT['bold'].fonts.unshift('MathJax_default-bold');" +
"VARIANT['italic'].fonts.unshift('MathJax_default-italic');" +
"VARIANT['-tex-mathit'].fonts.unshift('MathJax_default-italic');" +
"});" +
"MathJax.Hub.Register.StartupHook('SVG Jax Ready',function () {" +
"var VARIANT = MathJax.OutputJax.SVG.FONTDATA.VARIANT;" +
"VARIANT['normal'].fonts.unshift('MathJax_default');" +
"VARIANT['bold'].fonts.unshift('MathJax_default-bold');" +
"VARIANT['italic'].fonts.unshift('MathJax_default-italic');" +
"VARIANT['-tex-mathit'].fonts.unshift('MathJax_default-italic');" +
"});" +
"}";
(document.body || document.getElementsByTagName('head')[0]).appendChild(mathjaxscript);
}</script>
</div>
<aside>
<div class="bug-reporting__panel">
<h3>Find an error or bug? Have a suggestion?</h3>
<p>Everything on this site is avaliable on GitHub. Head on over and <a href='https://github.com/redoules/redoules.github.io/issues/new'>submit an issue.</a> You can also message me directly by <a href='mailto:guillaume.redoules@gadz.org'>email</a>.</p>
</div>
</aside>
</section>
</div>
<!-- start of footer section -->
<footer class="footer">
<div class="container">
<p class="text-muted">
<center>This project contains 81 pages and is available on <a href="https://github.com/redoules/redoules.github.io">GitHub</a>.
<br/>
Copyright &copy; Guillaume Redoulès,
<time datetime="2018">2018</time>.
</center>
</p>
</div>
</footer>
<!-- This jQuery line finds any span that contains code highlighting classes and then selects the parent <pre> tag and adds a border. This is done as a workaround to visually distinguish the code inputs and outputs -->
<script>
$( ".hll, .n, .c, .err, .k, .o, .cm, .cp, .c1, .cs, .gd, .ge, .gr, .gh, .gi, .go, .gp, .gs, .gu, .gt, .kc, .kd, .kn, .kp, .kr, .kt, .m, .s, .na, .nb, .nc, .no, .nd, .ni, .ne, .nf, .nl, .nn, .nt, .nv, .ow, .w, .mf, .mh, .mi, .mo, .sb, .sc, .sd, .s2, .se, .sh, .si, .sx, .sr, .s1, .ss, .bp, .vc, .vg, .vi, .il" ).parent( "pre" ).css( "border", "1px solid #DEDEDE" );
</script>
<!-- Load Google Analytics -->
<script>
/*
(function(i, s, o, g, r, a, m) {
i['GoogleAnalyticsObject'] = r;
i[r] = i[r] || function() {
(i[r].q = i[r].q || []).push(arguments)
}, i[r].l = 1 * new Date();
a = s.createElement(o),
m = s.getElementsByTagName(o)[0];
a.async = 1;
a.src = g;
m.parentNode.insertBefore(a, m)
})(window, document, 'script', '//www.google-analytics.com/analytics.js', 'ga');
ga('create', 'UA-66582-32', 'auto');
ga('send', 'pageview');
*/
</script>
<!-- End of Google Analytics -->
<!-- Bootstrap core JavaScript
================================================== -->
<!-- Placed at the end of the document so the pages load faster -->
<script src="../theme/js/bootstrap.min.js"></script>
<!-- IE10 viewport hack for Surface/desktop Windows 8 bug -->
<script src="../theme/js/ie10-viewport-bug-workaround.js"></script>
</body>
</html>