mirror of
https://github.com/redoules/redoules.github.io.git
synced 2025-12-12 15:59:34 +00:00
328 lines
20 KiB
HTML
328 lines
20 KiB
HTML
<!DOCTYPE html>
|
|
<html lang="fr">
|
|
|
|
<head>
|
|
<meta charset="utf-8">
|
|
<meta http-equiv="X-UA-Compatible" content="IE=edge">
|
|
<meta name="viewport" content="width=device-width, initial-scale=1">
|
|
<!-- The above 3 meta tags *must* come first in the head; any other head content must come *after* these tags -->
|
|
<meta name="description" content="Data Science for Political and Social Phenomena">
|
|
<meta name="author" content="Guillaume Redoulès">
|
|
<link rel="icon" href="../favicon.ico">
|
|
|
|
<title>Logging the training progress in a CSV - DL</title>
|
|
|
|
<!-- JQuery -->
|
|
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.3/jquery.min.js"></script>
|
|
<script>
|
|
window.jQuery || document.write('<script src="../theme/js/jquery.min.js"><\/script>')
|
|
</script>
|
|
|
|
<!-- Bootstrap core CSS -->
|
|
<link rel="stylesheet" href="../theme/css/bootstrap.css" />
|
|
<!-- IE10 viewport hack for Surface/desktop Windows 8 bug -->
|
|
<link rel="stylesheet" type="text/css" href="../theme/css/ie10-viewport-bug-workaround.css" />
|
|
<!-- Custom styles for this template -->
|
|
<link rel="stylesheet" type="text/css" href="../theme/css/style.css" />
|
|
<link rel="stylesheet" type="text/css" href="../theme/css/notebooks.css" />
|
|
<link href='https://fonts.googleapis.com/css?family=PT+Serif:400,700|Roboto:400,500,700' rel='stylesheet' type='text/css'>
|
|
|
|
<!-- HTML5 shim and Respond.js for IE8 support of HTML5 elements and media queries -->
|
|
<!--[if lt IE 9]>
|
|
<script src="https://oss.maxcdn.com/html5shiv/3.7.2/html5shiv.min.js"></script>
|
|
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
|
|
<![endif]-->
|
|
|
|
|
|
<meta name="tags" content="basics" />
|
|
|
|
|
|
</head>
|
|
|
|
<body>
|
|
|
|
<div class="navbar navbar-fixed-top">
|
|
<div class="container">
|
|
<div class="navbar-header">
|
|
<button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-collapse">
|
|
<span class="icon-bar"></span>
|
|
<span class="icon-bar"></span>
|
|
<span class="icon-bar"></span>
|
|
</button>
|
|
<a class="navbar-brand" href="..">Guillaume Redoulès</a>
|
|
</div>
|
|
<div class="navbar-collapse collapse" id="searchbar">
|
|
|
|
<ul class="nav navbar-nav navbar-right">
|
|
<li class="dropdown">
|
|
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false">About<span class="caret"></span></a>
|
|
<ul class="dropdown-menu">
|
|
<li><a href="../pages/about.html">About Guillaume</a></li>
|
|
<li><a href="https://github.com/redoules">GitHub</a></li>
|
|
<li><a href="https://www.linkedin.com/in/guillaume-redoul%C3%A8s-33923860/">LinkedIn</a></li>
|
|
</ul>
|
|
</li>
|
|
<li class="dropdown">
|
|
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false">Data Science<span class="caret"></span></a>
|
|
<ul class="dropdown-menu">
|
|
<li><a href="..#Blog">Blog</a></li>
|
|
<li><a href="..#Python">Python</a></li>
|
|
<li><a href="..#Bash">Bash</a></li>
|
|
<li><a href="..#SQL">SQL</a></li>
|
|
<li><a href="..#Mathematics">Mathematics</a></li>
|
|
<li><a href="..#Machine_Learning">Machine Learning</a></li>
|
|
<li><a href="..#Projects">Projects</a></li>
|
|
</ul>
|
|
</li>
|
|
<li class="dropdown">
|
|
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false">Projects<span class="caret"></span></a>
|
|
<ul class="dropdown-menu">
|
|
<li><a href="https://github.com/redoules/redoules.github.io">Notes (Github)</a></li>
|
|
</ul>
|
|
</li>
|
|
|
|
<!--<li class="dropdown">
|
|
<a href="../feeds/blog.rss.xml">Blog RSS</a>
|
|
</li>-->
|
|
|
|
|
|
</ul>
|
|
|
|
<form class="navbar-form" action="../search.html" onsubmit="return validateForm(this.elements['q'].value);">
|
|
<div class="form-group" style="display:inline;">
|
|
<div class="input-group" style="display:table;">
|
|
<span class="input-group-addon" style="width:1%;"><span class="glyphicon glyphicon-search"></span></span>
|
|
<input class="form-control search-query" name="q" id="tipue_search_input" placeholder="e.g. scikit KNN, pandas merge" required autocomplete="off" type="text">
|
|
</div>
|
|
</div>
|
|
</form>
|
|
|
|
</div>
|
|
<!--/.nav-collapse -->
|
|
</div>
|
|
</div>
|
|
|
|
|
|
|
|
<!-- end of header section -->
|
|
<div class="container">
|
|
<!-- <div class="alert alert-warning" role="alert">
|
|
Did you find this page useful? Please do me a quick favor and <a href="#" class="alert-link">endorse me for data science on LinkedIn</a>.
|
|
</div> -->
|
|
<section id="content" class="body">
|
|
<header>
|
|
<h1>
|
|
Logging the training progress in a CSV
|
|
</h1>
|
|
<ol class="breadcrumb">
|
|
<li>
|
|
<time class="published" datetime="2018-12-04T21:33:00+01:00">
|
|
04 décembre 2018
|
|
</time>
|
|
</li>
|
|
<li>DL</li>
|
|
<li>basics</li>
|
|
</ol>
|
|
</header>
|
|
<div class='article_content'>
|
|
<p>Let's see how we can log the progress and various metrics during the training process to a csv file.
|
|
Let's first import some libraries</p>
|
|
<div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">keras</span>
|
|
<span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span>
|
|
</pre></div>
|
|
|
|
|
|
<p>In this example, we will be using the fashion MNIST dataset to do some basic computer vision, where we will train a Keras neural network to classify items of clothing.</p>
|
|
<p>In order to import the data we will be using the built in function in Keras : </p>
|
|
<div class="highlight"><pre><span></span><span class="n">keras</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">fashion_mnist</span><span class="o">.</span><span class="n">load_data</span><span class="p">()</span>
|
|
</pre></div>
|
|
|
|
|
|
<p>The model is a very simple neural network consisting in 2 fully connected layers. The model loss function is chosen in order to have a multiclass classifier : "sparse_categorical_crossentropy"</p>
|
|
<p>Let's define a simple feedforward network.</p>
|
|
<div class="highlight"><pre><span></span><span class="c1">##get and preprocess the data</span>
|
|
<span class="n">fashion_mnist</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">fashion_mnist</span>
|
|
<span class="p">(</span><span class="n">train_images</span><span class="p">,</span> <span class="n">train_labels</span><span class="p">),</span> <span class="p">(</span><span class="n">test_images</span><span class="p">,</span> <span class="n">test_labels</span><span class="p">)</span> <span class="o">=</span> <span class="n">fashion_mnist</span><span class="o">.</span><span class="n">load_data</span><span class="p">()</span>
|
|
<span class="n">train_images</span> <span class="o">=</span> <span class="n">train_images</span> <span class="o">/</span> <span class="mf">255.0</span>
|
|
<span class="n">test_images</span> <span class="o">=</span> <span class="n">test_images</span> <span class="o">/</span> <span class="mf">255.0</span>
|
|
|
|
<span class="c1">## define the model </span>
|
|
|
|
<span class="n">model</span> <span class="o">=</span> <span class="n">keras</span><span class="o">.</span><span class="n">Sequential</span><span class="p">([</span>
|
|
<span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">Flatten</span><span class="p">(</span><span class="n">input_shape</span><span class="o">=</span><span class="p">(</span><span class="mi">28</span><span class="p">,</span><span class="mi">28</span><span class="p">)),</span>
|
|
<span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">Dense</span><span class="p">(</span><span class="mi">128</span><span class="p">,</span> <span class="n">activation</span><span class="o">=</span><span class="s2">"relu"</span><span class="p">),</span>
|
|
<span class="n">keras</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">Dense</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="n">activation</span><span class="o">=</span><span class="s2">"softmax"</span><span class="p">)</span>
|
|
<span class="p">])</span>
|
|
|
|
<span class="n">model</span><span class="o">.</span><span class="n">compile</span><span class="p">(</span><span class="n">optimizer</span><span class="o">=</span><span class="s2">"adam"</span><span class="p">,</span>
|
|
<span class="n">loss</span> <span class="o">=</span> <span class="s2">"sparse_categorical_crossentropy"</span><span class="p">,</span>
|
|
<span class="n">metrics</span> <span class="o">=</span> <span class="p">[</span><span class="s2">"accuracy"</span><span class="p">,</span><span class="s1">'mae'</span><span class="p">])</span>
|
|
</pre></div>
|
|
|
|
|
|
<p>In order to stream to a csv file the epoch results and metrics, we define a CSV logger. It is a callback located in </p>
|
|
<div class="highlight"><pre><span></span><span class="n">keras</span><span class="o">.</span><span class="n">callbacks</span>
|
|
</pre></div>
|
|
|
|
|
|
<p>Let's first import it </p>
|
|
<div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">keras.callbacks</span> <span class="kn">import</span> <span class="n">CSVLogger</span>
|
|
</pre></div>
|
|
|
|
|
|
<p>We now need to define the callback by specifiying a file to be written to, the separator and whether to append to the file or erase it every time.</p>
|
|
<p>The callback has to be added to the callbacks list in the fit method.</p>
|
|
<div class="highlight"><pre><span></span><span class="n">csv_logger</span> <span class="o">=</span> <span class="n">CSVLogger</span><span class="p">(</span><span class="n">filename</span><span class="o">=</span><span class="s2">"my_csv.csv"</span><span class="p">,</span> <span class="n">separator</span><span class="o">=</span><span class="s1">';'</span><span class="p">,</span> <span class="n">append</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
|
|
<span class="n">model</span><span class="o">.</span><span class="n">fit</span><span class="p">(</span><span class="n">train_images</span><span class="p">,</span> <span class="n">train_labels</span><span class="p">,</span> <span class="n">epochs</span><span class="o">=</span><span class="mi">5</span><span class="p">,</span> <span class="n">callbacks</span><span class="o">=</span><span class="p">[</span><span class="n">csv_logger</span><span class="p">])</span>
|
|
</pre></div>
|
|
|
|
|
|
<div class="highlight"><pre><span></span><span class="n">Epoch</span> <span class="mi">1</span><span class="o">/</span><span class="mi">5</span>
|
|
<span class="mi">60000</span><span class="o">/</span><span class="mi">60000</span> <span class="p">[</span><span class="o">==============================</span><span class="p">]</span> <span class="o">-</span> <span class="mi">9</span><span class="n">s</span> <span class="mi">148</span><span class="n">us</span><span class="o">/</span><span class="n">step</span> <span class="o">-</span> <span class="n">loss</span><span class="p">:</span> <span class="mi">0</span><span class="p">.</span><span class="mi">5020</span> <span class="o">-</span> <span class="n">acc</span><span class="p">:</span> <span class="mi">0</span><span class="p">.</span><span class="mi">8234</span> <span class="o">-</span> <span class="n">mean_absolute_error</span><span class="p">:</span> <span class="mi">4</span><span class="p">.</span><span class="mi">4200</span>
|
|
<span class="n">Epoch</span> <span class="mi">2</span><span class="o">/</span><span class="mi">5</span>
|
|
<span class="mi">60000</span><span class="o">/</span><span class="mi">60000</span> <span class="p">[</span><span class="o">==============================</span><span class="p">]</span> <span class="o">-</span> <span class="mi">8</span><span class="n">s</span> <span class="mi">138</span><span class="n">us</span><span class="o">/</span><span class="n">step</span> <span class="o">-</span> <span class="n">loss</span><span class="p">:</span> <span class="mi">0</span><span class="p">.</span><span class="mi">3765</span> <span class="o">-</span> <span class="n">acc</span><span class="p">:</span> <span class="mi">0</span><span class="p">.</span><span class="mi">8630</span> <span class="o">-</span> <span class="n">mean_absolute_error</span><span class="p">:</span> <span class="mi">4</span><span class="p">.</span><span class="mi">4200</span>
|
|
<span class="n">Epoch</span> <span class="mi">3</span><span class="o">/</span><span class="mi">5</span>
|
|
<span class="mi">60000</span><span class="o">/</span><span class="mi">60000</span> <span class="p">[</span><span class="o">==============================</span><span class="p">]</span> <span class="o">-</span> <span class="mi">8</span><span class="n">s</span> <span class="mi">129</span><span class="n">us</span><span class="o">/</span><span class="n">step</span> <span class="o">-</span> <span class="n">loss</span><span class="p">:</span> <span class="mi">0</span><span class="p">.</span><span class="mi">3371</span> <span class="o">-</span> <span class="n">acc</span><span class="p">:</span> <span class="mi">0</span><span class="p">.</span><span class="mi">8789</span> <span class="o">-</span> <span class="n">mean_absolute_error</span><span class="p">:</span> <span class="mi">4</span><span class="p">.</span><span class="mi">4200</span>
|
|
<span class="n">Epoch</span> <span class="mi">4</span><span class="o">/</span><span class="mi">5</span>
|
|
<span class="mi">60000</span><span class="o">/</span><span class="mi">60000</span> <span class="p">[</span><span class="o">==============================</span><span class="p">]</span> <span class="o">-</span> <span class="mi">8</span><span class="n">s</span> <span class="mi">133</span><span class="n">us</span><span class="o">/</span><span class="n">step</span> <span class="o">-</span> <span class="n">loss</span><span class="p">:</span> <span class="mi">0</span><span class="p">.</span><span class="mi">3129</span> <span class="o">-</span> <span class="n">acc</span><span class="p">:</span> <span class="mi">0</span><span class="p">.</span><span class="mi">8843</span> <span class="o">-</span> <span class="n">mean_absolute_error</span><span class="p">:</span> <span class="mi">4</span><span class="p">.</span><span class="mi">4200</span>
|
|
<span class="n">Epoch</span> <span class="mi">5</span><span class="o">/</span><span class="mi">5</span>
|
|
<span class="mi">60000</span><span class="o">/</span><span class="mi">60000</span> <span class="p">[</span><span class="o">==============================</span><span class="p">]</span> <span class="o">-</span> <span class="mi">9</span><span class="n">s</span> <span class="mi">151</span><span class="n">us</span><span class="o">/</span><span class="n">step</span> <span class="o">-</span> <span class="n">loss</span><span class="p">:</span> <span class="mi">0</span><span class="p">.</span><span class="mi">2952</span> <span class="o">-</span> <span class="n">acc</span><span class="p">:</span> <span class="mi">0</span><span class="p">.</span><span class="mi">8916</span> <span class="o">-</span> <span class="n">mean_absolute_error</span><span class="p">:</span> <span class="mi">4</span><span class="p">.</span><span class="mi">4200</span>
|
|
|
|
|
|
|
|
|
|
|
|
<span class="o"><</span><span class="n">keras</span><span class="p">.</span><span class="n">callbacks</span><span class="p">.</span><span class="n">History</span> <span class="k">at</span> <span class="mi">0</span><span class="n">x1582adc6780</span><span class="o">></span>
|
|
</pre></div>
|
|
|
|
|
|
<p>The results are stored in the my_csv.csv file and contain the epoch results </p>
|
|
<div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">pandas</span> <span class="kn">as</span> <span class="nn">pd</span>
|
|
<span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s2">"my_csv.csv"</span><span class="p">,</span> <span class="n">sep</span><span class="o">=</span><span class="s2">";"</span><span class="p">)</span>
|
|
</pre></div>
|
|
|
|
|
|
<div>
|
|
<style scoped>
|
|
.dataframe tbody tr th:only-of-type {
|
|
vertical-align: middle;
|
|
}
|
|
|
|
.dataframe tbody tr th {
|
|
vertical-align: top;
|
|
}
|
|
|
|
.dataframe thead th {
|
|
text-align: right;
|
|
}
|
|
</style>
|
|
<table border="1" class="dataframe">
|
|
<thead>
|
|
<tr style="text-align: right;">
|
|
<th></th>
|
|
<th>epoch</th>
|
|
<th>acc</th>
|
|
<th>loss</th>
|
|
<th>mean_absolute_error</th>
|
|
</tr>
|
|
</thead>
|
|
<tbody>
|
|
<tr>
|
|
<th>0</th>
|
|
<td>0</td>
|
|
<td>0.823400</td>
|
|
<td>0.502013</td>
|
|
<td>4.42</td>
|
|
</tr>
|
|
<tr>
|
|
<th>1</th>
|
|
<td>1</td>
|
|
<td>0.863050</td>
|
|
<td>0.376516</td>
|
|
<td>4.42</td>
|
|
</tr>
|
|
<tr>
|
|
<th>2</th>
|
|
<td>2</td>
|
|
<td>0.878867</td>
|
|
<td>0.337097</td>
|
|
<td>4.42</td>
|
|
</tr>
|
|
<tr>
|
|
<th>3</th>
|
|
<td>3</td>
|
|
<td>0.884317</td>
|
|
<td>0.312893</td>
|
|
<td>4.42</td>
|
|
</tr>
|
|
<tr>
|
|
<th>4</th>
|
|
<td>4</td>
|
|
<td>0.891583</td>
|
|
<td>0.295157</td>
|
|
<td>4.42</td>
|
|
</tr>
|
|
</tbody>
|
|
</table>
|
|
</div>
|
|
</div>
|
|
<aside>
|
|
<div class="bug-reporting__panel">
|
|
<h3>Find an error or bug? Have a suggestion?</h3>
|
|
<p>Everything on this site is avaliable on GitHub. Head on over and <a href='https://github.com/redoules/redoules.github.io/issues/new'>submit an issue.</a> You can also message me directly by <a href='mailto:guillaume.redoules@gadz.org'>email</a>.</p>
|
|
</div>
|
|
</aside>
|
|
</section>
|
|
|
|
</div>
|
|
<!-- start of footer section -->
|
|
<footer class="footer">
|
|
<div class="container">
|
|
<p class="text-muted">
|
|
<center>This project contains 105 pages and is available on <a href="https://github.com/redoules/redoules.github.io">GitHub</a>.
|
|
<br/>
|
|
Copyright © Guillaume Redoulès,
|
|
<time datetime="2018">2018</time>.
|
|
</center>
|
|
</p>
|
|
</div>
|
|
</footer>
|
|
|
|
<!-- This jQuery line finds any span that contains code highlighting classes and then selects the parent <pre> tag and adds a border. This is done as a workaround to visually distinguish the code inputs and outputs -->
|
|
<script>
|
|
$( ".hll, .n, .c, .err, .k, .o, .cm, .cp, .c1, .cs, .gd, .ge, .gr, .gh, .gi, .go, .gp, .gs, .gu, .gt, .kc, .kd, .kn, .kp, .kr, .kt, .m, .s, .na, .nb, .nc, .no, .nd, .ni, .ne, .nf, .nl, .nn, .nt, .nv, .ow, .w, .mf, .mh, .mi, .mo, .sb, .sc, .sd, .s2, .se, .sh, .si, .sx, .sr, .s1, .ss, .bp, .vc, .vg, .vi, .il" ).parent( "pre" ).css( "border", "1px solid #DEDEDE" );
|
|
</script>
|
|
|
|
|
|
<!-- Load Google Analytics -->
|
|
<script>
|
|
/*
|
|
(function(i, s, o, g, r, a, m) {
|
|
i['GoogleAnalyticsObject'] = r;
|
|
i[r] = i[r] || function() {
|
|
(i[r].q = i[r].q || []).push(arguments)
|
|
}, i[r].l = 1 * new Date();
|
|
a = s.createElement(o),
|
|
m = s.getElementsByTagName(o)[0];
|
|
a.async = 1;
|
|
a.src = g;
|
|
m.parentNode.insertBefore(a, m)
|
|
})(window, document, 'script', '//www.google-analytics.com/analytics.js', 'ga');
|
|
|
|
ga('create', 'UA-66582-32', 'auto');
|
|
ga('send', 'pageview');
|
|
*/
|
|
</script>
|
|
<!-- End of Google Analytics -->
|
|
|
|
<!-- Bootstrap core JavaScript
|
|
================================================== -->
|
|
<!-- Placed at the end of the document so the pages load faster -->
|
|
<script src="../theme/js/bootstrap.min.js"></script>
|
|
<!-- IE10 viewport hack for Surface/desktop Windows 8 bug -->
|
|
<script src="../theme/js/ie10-viewport-bug-workaround.js"></script>
|
|
|
|
|
|
</body>
|
|
|
|
</html> |